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CALCULATION OF FISSION BARRIERS®

P. MOLLER and J. R. NIX
Los Alamos Scientific Laboratory, iversity of California
Los Alamos, New Mexico, Uinited States of America

ABSTRACT

We review recent advances in the calculation of the nuclear potential
energy of deformation, including both selfconsistent microscopic methods and
the macroscopic-microscopic method. Particular attcntion is pald to the
steps that are involved in calculating the potential energy according to the
latter method., These steps include specifying the nuclear shape, calculat-
ing the macroscopic (liquid-drop) encrgy, generating the single-particle
potential, solving the Schrodinger equation, and calculating .he microscopic
(shell and pairilng) corrections.

In the second part of the paper we present and compare the results of
two new calculations that we have performed recently at Los Alamos. In the
first calculation, the nuclear shapes are specified 1n terms of smoothly
joined portions of three quadratlc surfaces of revolution, which permits us
to calculate the potential energy all the way to the scission point. The
extrema in the potential-energy surfoces arc determined by varying independ-
ently three of the coordinates in this paramectrization; the ground-state
energy i1s determined also by usc of ar alternative parametrization. The
macroscoplc encrgy ls calculated from the droplet modol of Mycrs and
Swiateckl, which includes higher-order terms in A™ 1/3 and in [ (N=2)/A]% thun
are rvtninod in the liquld-drop model., The microscopic shell and pairing
corrcetlons are calculated by means of Strutinsky's method from the single-
particle levels of a diffuse-surface folded Yukawa single=-particle potential.
We use a new set of potential parameters obtained from adjustments to exper-
imental slngle-particle levels In heavy deformed nuclel and from statistical
caleulations,  The sceond new caleulatdon 18 performed with the modified os-
cillator potential and {s gimilar to a proevious calculation with this poten-
tial cexcept that we now use the droplet model in place of the liquid-urop
model,

rhese and carller caleulations provide an wndervatanding and wification
of many vnrlud phtnumtnl nnnnclutvd wlth nuclear ghape chanpes: nucloear

o aRm A e e meme e - E B o L o

Thin wulk Wik Huppnllvd hy the Uo 8§, Atomice Encrgy Commiassion and thoe
Swoed Ish Atomice Resicarch Councll.

-1-



ground-stiite masscs and deformations, sccond minima in the fission barriers
of actinide nuclei, fission-barrier heights, and fission-fragment mass dis-
tributions. Tor thec lighter actinide nuclei the asymmetric second saddle
point is split into two individual saddle points scparated by an asymmetric
third minimum, which possibly resolves the thorium anomaly. The calculated
energlies of the local minima and saddle points iIn the potential-energy sur-
faces reproduce the experimental values to within an accuracy of about 1 MeV,
although larger systcmatic errors are still present in some cases. The cal-
culated properties of the saddle points also reproduce qualitatively the
main featurcs of experimental fission-fragment mass distributions.

1. TINTRODUCTION

You probably have followed the renaissance that has taken place in our
understanding of fission since the first: IAEA fission symposium in Salzburg
eight ycars ago. At that symposium we still thought that the fission bar-
rier of a nucleus was a monotonically increasing function of deformation
until it reached 1ts maximum value and then a monotanically decreasing func-
tion of deformation. But it soon became clear that iunstead cf this smooth
behavior the fission barrier contains large fluctuations as ¢ function of
both nuclear shape and particle numbera. For some nuclei, these fluctua-
tions lead to a fission barrier that contains two pcaks separated by a
second minimum, as illustrated in Fig. 1 for 240py,

By the time of the second TAEA fission symposium in Vlienna four years
ago, we were able to calculate such a barrler for symmetric deformations in
terms of nonuniformities in the single-particle levels near the Fermi sur-
face. We could also understand threce new experimental discoveries--sponta-
neously fissioring isomers, broad resonances in fission cross sections, and
narrow intermediate structure in fissloa cross scctlons---in terms of this
sccond minimum,

But three major puzzles remained. Firsat, for most actinide nuclei the
calculated height of either the first peak or the sccond peak was several
MeV higher than the experimental value. Second, the caleuloted fission bar-
riers were all stable with respect to mass-asymmetric deformations, which
violated the well=-cstablished preference of heavy nuclel to divide asymnet-
rically at low cxcitation energy. And third, the calculated heights of the
first peak and second minimum for isotopes of thorium were substantially
lower than the experimental values.

Since Viema two of these puzzles have largely disappearced. We now
know that in moat actinide nuclel the sccond penk 16 unstable with respect
to mass asymmetry and that In the heavier actlnide nucled the firat peak 1s
unstable wlith respect to avial asymmetry (gamma deformations).  Instablil-
ties of thia type lower the caleulated barricer helghts and also provide a
mechanism for an asymmetric mass Jdivisfon.  Thesoe Instablilltlons arlse be-
caude of wingle-particle offects slmblar to those responsible for a deformoed
ground-atate minimum and sccond minfimum In the fission barcler,  The thired
puzzle 1u not definftely solved, but we supgest later a possible roasolat ion
In termyg of alnploe-particle effects near the asynmetrle socond saddle polnt,

Our plan 1s {lrat to review the varlous approaches that are taken In

the calculat ton of {ission barrfers and sccond to proosent some new reasults
that we have obtalned at Lon Alimoa. We do not have space here to review
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everyone's contributions but instead concentrate on recent results that hest
11lustrate the physical principles involyed. IExhaustive references to other
work, as well as to the mathematical detalls, can be found in four recent
review articles [2-5]. We then compare the calculated cnergies of the local
minima and saddle points in the barrlers with experimental results, some of
which are described in this symposium by Britt, Vandenbosch, and others
[6,7]. We also discuss the extent to which e:perimental fission-fragment
mass distributions can be understood in terms of the calculated properties
of the saddle-point shapes. We conclude with an assessment of our present
ability to calculate fission barriers.

2. SELFCONSTISTENT MICROSCOPIC METHODS

There are two general approaches for calculating the nuclear potential
cncrgy of deformation--selfconsistent microscopic methods and tha
macroscopic-microscopic method. In the microscopic methods, one usually
starts with a given nucleon~-nucleon potential and solves the many-body
Schrodinger equation by means of the Hartree-Fock approximation. This can
be Jone either with a realistic potential that is adjusted to reproduce
fundausental data such as two~nucleon scattering data, or with an effective
interaction that is adjusted to reproduce gross nuclear properties.

The realistic potentials of course lead to equations that. are more dif-
ficult to solve. If the potential has a hard core, then the infinities
assoclated with it must be removed by means of the approximations introduced
by Brueckner. The resulting Brueckner-Hartrce-Fock equations are so compli-
cated that they have been solved so far only for spherical nuclei [8,9].

The equations are simpler for a soft-core potential, where the ordinary
Hartrec-Fock method can be applied. At deformations away from a local mini-
mum the potential energy is calculated by applying an external field and
solving the resulting constrained Hartree-Fock equations. In this way the
potential energy has now been computed as a function of the quadrupole
moment for some medium-weight nuclel such as 108py [10]. lMowever, computa-
tional difficulties have prevented the extenslon of these calculations to
heavy nuclel. For heavy spherical nuclei the calculated total binding ener-
gles arce substantially smaller than the experimental values [11]. Although
the agreement would be improved somewhoat by including the sccond-order cor-
rection to the Hartree-Fock cnergy [12], this correction has not yet becn
calculated for deformed nucled.

A major difficulty associated with the use of realistic potentials is
the necessity to calculate the exchange terms in the Hartree=Fock equations.
This difficulty can be cllimlnated by choosing en effective interaction for
which the exchange terms are casy to caleculate., Or alternatively, the ex-
change of fects can be absorbed Into the effective interactlon [13,14]. With
c¢itheor approach the higher-order correctlons to the flrst-order cnergy are
abuorbed into the interaction through a readjustment. of 1ts parameters.

Athough several effectlve Interactions have been proposcd, the only
one that is wsed In practice for the calculation of fissloa barrlers is
Skyrme's dnteract lon [15] as sfmplificd by Vautherin and Brink [16]. This
Interactdon 18 cosy to use becaune most of its terms contain delta functlons
and becaude satuwratfon 1o achleved by means of a threo-hody toerm.  The nix
adJustable parancters of the Interaction ave related loosely to the cooeffi-
clents of the five dominant terms in tha semlemplrical nuclear mang formula
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(corresponding to the yolume, surface, Coulomb, volume-asymmetry, and
suirface-asymmetry energies) and to the spin-orbit interaction strength.

The Skyrme interaction has now bee.. used by Flocard, Quentin, Kerman,
and Vautherin to computc the potential energy as a function of the 3uadrupole
moment for several isotopes of cerium [17] and more recently for 2h 0py [18];
we will learn about such calculations later in this scssion from Quentin
[19]. The calculated height of the sccond peak in the barrier for 240py is
19 MeV, which 1s substantially higher than the experimental value of 5.35
MeV [20]. This large discrepancy probably arises from a combination of
threce factors: (1) The results have not converged as a function of the basis
size. (2) The parameters of the Skyrme interaction yield a surface energy
that is too large compared to the Coulomb enerjy. (3) Muss-asymmetric da-~
formations are not included. When these three points are taken care of we
can expect such calculations to reproduce experimental fission barriers witi
satisfactory accuracy. This is the most promising of the microscopic ap-
proaches, and perhaps four years from now at the fourth IAEA fission sympo-
silum a substantial fraction of the fission barriers discussed will be com-
puted selfconsistently in terms of such an effective interaction.

3. MACROSCOPIC-MICROSCOPIC METHOD

But at present nearly all fission barriers are calculated by means of
the second approach--the macroscopic-microscopic method. This method syn-
thesizes the best features of two complementary approaches: The smooth
trends of the potential energy (with respect to particle numbers und deforma-
tion) are taken from a macroscopic model, and the local fluctuations are
taken from a microscopic model. The method in its present form was developed
in 1966 by Strutinsky [21] and has since revolutionized thc calculation of
fission barriers. The idea of a macroscopic-microscopic method had been in-
troduced earlier by Swiatecki [22] and others.

In this mecthod, which is suitable for treating nuclear systems that
contain a large number of particles, the total nuclear potential encrgy of
deformation is written as the sum of two terms,

= Vmacroscopic t Avmicrosuopic

The firat term 1s a smoothly varying macroscoplc energy that reproduces the
broad trends of the potentlal energy. In a hceavy nucleus 1t accounts for
about 99.5% of the 2000 McV total binding cnergy and for about 95% of Lhe
200 McV variatilion in energy durlng fission. 7The second term contajus os-
cillating mlcroscopic corrections that arlse because of the discretencss of
the Individual partlcloes.  The most important of these purely microscopic
contributions are the shell and palring correctlons.  For a tipghtly bound
nucleus In Its ground state the total mievoscopic corrcct lon s over 10 MeV
In magnitude, but In other situatlons (vt I8 vsually somewhat leas.

The nuclear porentlial enerpy of deformatfon Is calculated by means of
the macroscople-mleroscople method fn flve steps: (1) The overall peomet-
rical shape of the nucleas Is Hirat spoeelfied, snd (2) the macroncople part,
of the conerpy Ia caleunlated for this shapa.  (3)  The sinple=parttele potoen-
tinl felt by a nentron or proton Is gencrated, and (4) the Schrod Inger



equation is solved for the single-particle encrgies. (5) These energies
arc then used to calculate the microscopic (shell and pairing) corrections.
The total potential energy is gilven finally by the sum of the macroscopic
energy calculated In step 2 and the microscopic corrcections calculated in
step 5. These steps have receilved considerable study, and several methods
have evolved for handling each of them.

3.1. Nuclear shapes

In fission, as well as in the related areas of heavy-ion reactions and
nuclear ground-state masses and deformations, at least four collective coor-
dinates are required to describe the most important shapes that arise. These
are (1) a separation coordinate, which specifies the overall separation of
the mass centers of the two nascent or separated fragments or colliding ions,
(2) a mass-asymmetry coordinate, which specifies the amount of mass in one
fragment relative to the other, (3) a fragment elongation coordinate, which
specifies the overall elongation of the fragments, or alternatively the
radius of the neck between them, and (4) an axial-asymmetry (gamma) coordi-
nate, which specifies the flattening of the shape about its symmetry axis.
Because of computational difficulties the latter coordinate is not included
in most studies in fission. Our discussion is therefore sometimes restricted
to axial symmetry, but the generalization to axially asymmetric shapes is
straightforward.

The methods for describing such shapes fall into two major classes. The
first class is an expansion about some basic shape, such as a sphere, a
spherold, or a Cassinian oval. For example, shapes close to a sphere are
described conveniently by expanding the radius vector to the nuclear surface
in a series of spherical harmonics. 1f the shape is eiongated it is better
to absorb some of the deformation into the basic shape and expand about a
spheroid (ellipsoid of revolution). This can be done either by means of the
coordinates €4 used by Nilsson and others [1, 2, 23-29], or by writing p?
as a polynomlal in 2z, which i1s . he method used by Lawrence, Hasse,
Strutinsky, Pauli and others [3, 5, 30-35]. If the shapz has alrcady devel-
oped an appreciable neck 1t is sometimes advantagcous to expand about a
Cassinian oval, which can absorb some of the necking as well as elongation
into the basic shape; this method is used by Cherdantsev and coworkers [36]
and by Pashkevitch [37].

The second class of methods descrvibes the shape in terms of two bodies
rather than a single body. In these two-center parametrizations each end of
the nucleus is usually represented by a portion of a spheroid. In the most
simple version the two spheroids intersect in an undesirable cusp [38], but
this cusp may be removed by conmnecting portions of the two end spheroids
smoothly with n third function that describes the neck reglon. In the
method used by Greiner, Mosel, and thelr coworkers [39-43), precisely one-
hall of cach end spherold {n used in forming the shape, which unfortunately
prevents the deacription of diamond-Like nuclear ground-state deformations
and some Important shapes that arlse in heavy-lon reactions.  In another
method [44=52], arbitrary portions of the two end spheroids are connected
smoothly by a quadratic neck funct fon,

Becanae an expansion method 1s usuully better for doscribing nuelear
proud-atate deformationn and the carly stapen of {1sslon, whereas a Lwo-
conter method Ty usnally required for deseribing the later stages of fissfon
and heavy-ion reactlond, it 1s desirable to define the collective coordinates
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in some parametrization-independent way that permits a connecction to be made
between the various mecthods. Of course the ideal choice would be to define
the coordinates so that the resulting inertia matrix is everywhere diagonal
and constant. This 1s in general impossiblc co accomplish, and the best
that we can achieve at prescent is to define the coordinates in terms of
physically mcasurable quantities.

For symmetric shapces a good choice involves the use of successive
central moments of one-half of the shape distribution [53]. Thea the separa-
tion coordinate is simply the distance between the centers of mass of the two
nascent or ¢ parated fragments, and the fragment elongation coordinate is the
root-mean-square extenslon of a fragment about its center of mass. As Sierk
will discuss 1later in the symposium, this choice has alrcady proved useful
for displaying dynamical paths in fissicn and heavy-ion reactions [51]. The
mass-asymmetry coordinatc may be defined conveniently (and unambigucusly) as
the difference between the masses to either side of the point midway between
the ends of the shape [3, 5, 33]. For shapes with a well-defined neck a more
pleasant choice would involve the masses to either side of the neck, but in
practice the two definitions are approximately equivalent because in such
cases the volume in the neck region is small.

3.2. Macroscopic energy

Once the nuclear shape is spccified, the macroscoplc energy must be
calculated for this shag?. This usually 1is done by expanding the nuclear
energy }n powers of A~'’3 and [(N-Z)/A]%2. Truncating the expansion at
the A%2/3[(N-2)/A]> term leads to the liquid-drop model, where the two
shape-dependent terms are the cohesive surface cnergy and the disruptive
Coulomb energy.

The inclusion of higher-order terms in the expanslon leads to the drop-
let model, which takes into account cffects that are assoclated with thle
firite size of nuclei, such as nuclear compressibility [54-56]. Myers and
Swiatecki have now determined a preliminary set of constants for the droplet
model [56] from adjustments to nuclear ground-state masscs and fissilon-
barrier heights and fcom statistical calculations. The resulting curvature-
energy constant 1s zero. The effectlve surface—-asymmetiy constant, which
regulates how rapidly fission barriers arce lowered with the addition of
neutrons, is signlflcantly larger for heavy nuclel than the value in their
earlicer llquid-drop model [57]. As Howard will describe in the next paper
[50]), this makes it unlikely that superhcavy nuclei can be formed by multi-
ple neutron capture.

The condition that must he satisflied in order for the nuclear encrgy
to be expanded in this way 1s thal the surface diffusencss be small comparad
to the extension of the nelghboring volume region., Thls conditlon breaks
down for light nuclel and for shapes with small necks, Tor example near the
sclssion polint in fisslon and ncar the polnt of first contact In heavy-lon
reactions.  When caiculating the energy of such shapes It 1s necessary to
take Into account the finfte range of the nuclear force.

This could be done by treatlng an effect Ive nueleon-nucleon interactlon
in some statlstical approximatlon such as the Themasn-YFoerml method |54, 58,
59]1. lowever, in practice such caleulations have been limited ofther to
small deformat fons [60] or ta two 1ight spherleal nuclel apecificd by a
single separatlon coordinate [61, 62].
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A simpler method has been developed recently for inecluding finite-range
effects. In this method the nuclear macroscopic energy is calculated in
terms of a doublc volume integral over a Yukawa function. As Krappe will
discuss later in this session [63], this leads to several important conse-
quences, such as a reduction in the stiffness of light nuclei with respect to
deformation. This lowers the fission barriers of nuclei near silver by about
10 MeV relative to those calculated with the liquid-drop model and shifts the
critical Bubinaro-Gallonc point (wherc stability agailnst mass asymmetry is
lost) to Z 2/A = 23, in approximate agreement with recent experimental evi-
dence. The reduced stiffness alsc lcads to a secondary minimum in the poten-
tial encrgy of "%Ca and certain other light nuclei, which provides a natural
interpretation of the rotational states observed in these nuclei. In addi-
tion, exgerimenta] interaction—barrier heiEhts for systems ranging from
“%a + %0 and 2°%Pb + “He to 3%y + ®¥kr are reproduced to within 5%
accuracy. This method also provides a way to calculate the nuclear macro-
scopic energy corresponding to the inner surface of a bubble nucieus [64].

3.3. Single-particle potential

Once the nuclear shape is specified and thc macroscopic energy is cal-
culated, the next step is to generate the single-~particle potential for this
gshape. We know of course that the true potential is nonlocal and that it
would require a selfconsistent calculation for its determination. But the
great virtue of the macroscopic-microscopic method is that single~particle
effects can be extracted approximately from a local static potential that is
not generated selfconsistently.

Figure 2 illustrates our qualitative expectations concerning the spin-
independent part of the nuclear potential. Because the single-particle po-
tential arises from the interaction of a nucleon with its close neighbors,
it 18 roughly constant in the nuclear interior and rises to zero within a
surface region whose thickness is approximately independent of nuclear size
and position on the surface. For separated nuclei the potential has similar
features concentrated in each of the individual nuclei. This means that near
the scission point in fission, or near the point of first touching in heavy-
ion rcactions, the potential is roughly constant in the interior of each
nuclceus and is elevated somewhat in the neck region. The overall geometrical
shape of the potential follows closely that of the nucleus.

The potentials that have been developed for approximating this behavior
fall Into two general classes: modifled oscillator potentials that rise to
infinity at large distances, and diffuse-surfaco potentials that go to zero
at large distances. Modified oscillator potentials are usually obtained by
starting with a potential that rises parabolically to infinity from eilther,
one¢ or two centers. An angular-momentum correctlon term proportional to L2
is then added, which in effect makes the potential rise more slowly near the
center and faster near the nuelear surface. In an ordinary [one-center) po-
tential, which has been studiled cxtensively by Nilsson and others [1, 2, 21,
23-29, 32, 65, 66], the minimum of the orlginal oscillator potential always
occurs at the nuclear center. llowever, for suvffilclently large deformations
it 1o possible that the §2 correction term leads Lo a potential that in ef-
feet has two centers [67]).  Tn rhe potential commonly referred to as a two-

centoer polentlal, which has been used by Cherdantsev, Greiner, Mosel, and
others [36, 39-43, 52], two scparate minlma occur in the original oscillator
potuntial dtself. At flrst slght thls may scem clearly preferable. lowever,
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when the fragment centers scparate, the two-center potential rises several
times as rapidly in the neck region as would be 2xpected from fundamental
considerations. This leads to the possibility that some of the conclusions
based on this potential are associated with this spurious fcature.

There are also two major types of diffusc-surface potentlals. The first
type i1s obtained by generallizing a spherical Woods-Saxon potential to de-
formed shapes. 1In the generalization used by Pashkevitch, Strutinsky, Pauli,
and others [3, 5, 32-35, 37, 68], the potential's normal diffuseness is to
first order constant over the surface, The resulting generalized Woods-Saxon
potential is satisfactory for most shapes, but contains unphysical featurcs
when the neck radius is smaller than the diffuseness parameter. It therefore
cannot be used to describe shapes ncar the scission point in fission or near
the point of first touching in heavy-ion reactions.

The second type of diffuse-surface potential is generated by folding a
Yukawa function over a uniform sharp-surface generating potential whose shape
corresponds to the given nuclear shape [45-50]. 1In other words, a finite
square-well potential of the appropriate depth and geometrical shape is con-
verted into a diffuse-surface potential by folding a Yukawa function over it;
the range of this function 1is chosen to reproduce the desired surface diffuse-
ness. For small deformations the resulting potential is very close to a
generalized Woods—-Saxon potenitial. The major advantage of this folding pro-
cedurc is that it can be used to generate easily a potential for any con-
ceivable shape, including the transition for shapes with small necks to a
potential concentrated in each of two individual nucleil, or vice versa. The
potentials shown in Fig. 2 were generated in this way.

Besides the spin-independent part of the potential, there 1s an addi-
tional potential arising from the interaction between the nuclecon spian and
orbital angular momentum. Tinally, protons feel a Coulomb potential, which
is calculated casily by assuming that the nuclear charge is distributed uni-
formly within the nuclear surface or within the nuclear generating potential.
However, in studies with oscillator potentials the Coulomb potentlal usually
is not includad explicitly, but its effeccts are absorbed by readjusting the
parameters of the nuclear part of the potential.

Irrespective of how it is generated, the final potential usually con-
tains about six parameters that effectively descrlibe the depth, radius, dif-
fuseness, and spin-orblit strength of the potentials for neutrons and protons.
In studies with oscillator potentials these parameters are usually determlned
from adjustments to experimental single-particle levels in heavy deformed
nuclei. For dlifusc-surface potentials some of the parameters can be ob-
tained from stotistical calculatlons [69]; the remainder are usually deter-
mined from adjustments to cxperimental slngle-particle levels in cither
heavy spherical or heavy deformed nuclel,

3.4. Solution of Schrodinger cquation

Once the potenifal appropriate to a glven shape i3 pgenerated, the next
step Is to solve the Schrodinger equation for the single-particle encrgiles.
There are two genceral methods for doing this: expansion In basls functions
and finite-diflference methods.  The expanglon methods are usually sceveral
times as fast as the (infte~difforence methods for calculating single-particle
encrples with comparable accuracy [46, 47]. Tor most applicatfons In fisslon
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the preferred choice is to cxpand the wave function in a sct of deformed
harmonic-oscillator basis functions.

3.5. Microscopic corrections

Once the single-particle energy levels are solved for, the microscopic
corrections to the potential encrgy must be extracted from them. The two
most important of these corrections are the shell correction and the pairing
correction,

AVmicrosc0pic = & henn t AVpairing

They arise because of fluctuations in the actual distribution of levels rela-
tive to a smooth distribution.

These fluctuations are espcclally dramatic for a pure harmonic-oscillator
potential, as shown in Fig. 3. For a shape of high symmetry, such as a sphere
or a spheroid whose major axis to minor axis is in the ratio of two small
integers, the levels group intc highly degenerate shells [70]. For such a
shape, the energy of the system is relatively lower for particle numbers that
complete a shell than for intermediate particle numbers. At other deforma-
tions, the levels are distributed more uniformly. In an actual nucleus simi-
lar fluctuations in the single-particle levels give rise to microscopic cor-
rections that oscillate with deformation and parti: le numbers. These are the
oscillations that are responsible for deformed ground states, s=cond minima
in fission barriers, and asymmetric sadcle-point shapes.

The primary theoretical justificatlon “or extracting the shell correc-
tion from single~particle energles is proviued by the stationary property of
the Hartree-Fock solution: To first ocder in the deviation of the actual
nuclear density from a smooth density, the total Hartree-Fock energv is equal
to the sum of single-particle energiles

>
€
n=1 O

calculated from a smooth slngle-particic potentic?, plus a smoothly varying
term [3, 5, 9, 10, 65, 71, 72]. Therel»re, to first vrder in nuclcar density
deviations, the fluctuations that we want to isolate are contained ir this

sum of single-particle encrgices. As Brack will discuss later in th's ses-

sion [71], second-order eifccts in the shell correction [72] arc expected in
general to be about 1 MeV in magnitude, but could ba somewhat larger for spher-
ical nuclel. These second-order cffects are probally responsible for some of
the remaining discrepancies between calculated aud experimental results.

The extraction of the shell correction from the single-particle encrples
has a simple geometrice interpretation, as 1llustrated In Fig, 4. Flrst pliot
the energies € at a gilven deformation ve the single-particle number n.
For n macroscopfc system wlthout single-particle of fects all the energles
would 1lfe on a smooth curve, but the discreteness of the singlae paticles
causcy some fluctuations about a monotonically increasing function of n.

The discrete energles ¢ can be reparded as a stalvease foaction formed by
horlzontal and vertical Tines through the polnts. Next remove the local
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fluctuations of the staircase function while retaining Its long-range be-
havior by passing a smooth curve €(n) through it. Then the shell correction
for a specifiecd number of particles N 1s glven simply by the difference be-
tween the arcas under the staircase curve and the smooth curve vp to N; that
is,

N N

_: € "'f E(n) dn .
n=1 " 0

A varicty of methods have been proposed for determining the smooth
curve €(n). Uufortunatcly, most of these ma2thoda work only for certain
simple potentinls and cannot be used, for example, with potentials that con-
tain a spin-orbit term. JFor realistic potentials of arblitrary shape, the
most satisfactory way at present to determine €(n) 1s by use of Strutinsky's
method [21], which was described to us at the second TAEA fission symposium
by Strutinsky himsclf [32]. We necd not repcat the technical details of his
mcthod here.

An alternative method has been studied for calculating the shell cor-
rection from the high-temperaturc dependence of the entropy of the single-
particle system on excitation energy [73-77]. For heavy nuclei the recsults
obtained by use of this method agree with those obtained by use of Strutinsky's
method to within about 0.5 MeV. UTPerhaps this method will be discussed during
the session on thermodynamic propertics of nuclel.

The scecond type of single-particle corrvection--the palring correction--
arlses from the short-range interaction of corrclated pairs of nuclcons moving
in time-reversed orbits. This is the most iwmportant an:id easily treated of the
many residuval interactlions felt by a nucleon, Rcelative to the energy without
palring, this interactlon always lowers the cnergy. But relative to the pair-
Ing cnergy of a smooth distributlon of levels represcentIng an average nucleus,
the palring correction can have cither sign. The lowering 1in encrgy is larger
when more pairs of nuclecons are able to interact, which occurs when the level
density near the Ferml surface is high. This 1s opposlte to the behavior of
the shell correcticn, and thias leads to a partial cancellation of the two cor-
rections.  Rrcause the shell correction Js larger, it determines the main
trends of the total single=particle correctlon.

The esscatial features of the pairing corraction can be desceribed iIn
terms of a conutant palring Interactlon between a gilven number of palrs of
particles.  ‘Then a standord palring caleculation In the BCS approximntlon
gives the lowerlny In enerpy for the actual levelas. A simllar caleulatdon
for the same numbor of particles distributed smoothly according to @ (n), or
in practlcee distribated wiformly, gives the Jowerlop for an average nuclcus.
The difference between the loworing for the actual levels and the lowvering
for the smooth levels Is the palring correct o, ,

Onee the fluctuatng shell and patring corraetions are caleulated, the
Finand ntep 1a to add them to the smooth macroscoplec cnerpy calceulated In
step 2 1o obtaln the total potentlal energy.

These methoda have now been used by several gronps to caleulate the [ Is-

nlon bavelers tor dozens of nueloel [ I=b, 2428, 32297, A1=473, 47=0H0, 52, Oh,
60, O8], In most tnstoneen the results obtaloed by the differenr groups are
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qualitatlively similar, .although some differences exist, Rather than trying
to review all of this work, we would like to describe instcad some new re--
sults that we have obtained rccently at Los Alamos.

4. NEW CALCULATIONS

We have performed two separate new calculations: one with the folded
Yukawa potential and the other with the modified oscillator potential., Both
of thesc calculations are limited to cven nuclei. In the former calculation,
there arc three maln differences compared te previous studics with this
potential. First, we now usc the droplet model in place of the liquid-drop
model for caliculating the macroscopic energy. The constants of the droplet
model are a preliminary set determined by Myers and Swlateckl in January 1973
[56]. We may thercfore regard the present results as one step in the complex
iteration that i1s required for a final determination of these constants.

Second, we now investipate a larger part of the deformation space when
determining the extrema of the potentilal-energy surfaces. Our exact procedure
is8 described in the appendix, but the idea is that in the region that includes
the first and gecond saddle points and the second minimum we minimize the po-
tential energy calculated in the three-quadratic-surface parametrization with
respect to a necking cecordinate. During this minimization the eccentricities
of the two cnds of the nucleus and the distance between the centers of mass
of the two nascent fragments arc held fixed at the values corresponding to the
y family of shapes [45, 47). In the region of the ground state a somewvhat
different constraint on the three-quadratic-surface parametrization is used.
The ground-statce cnergy 1s also calculated by use of the two coordinates ¢
and €, in Nilsson's perturbed-sphercid parametrization [1, 2, 23-29], which
for most deformed auclei ylelds a lower energy. In the region somewhat beyond
the sccond saddle puin: down to scission the potentlal encrgy is no longer
minimized (because the nuclceus 18 on the side of a steep hill), but is cal-
culated instead for shapes along the most probuble idealized liquid-drop-model
dynamical path for fisslility parametor x = 0.8 [44, 51]) and for asymmetric
perturbations about these shapes. The flssility parameter 1s defined as the
ratio of the Coulonmbh cnergy of a spherical sharp-surface drop to twice the
spherical surface energy.

In all reglons the final potential cnergy is displayed in terms of a
flssion coordinate r defined us the distance between the mass conters of
the two halves of the dividing nucleus and a mass-asynmetry coordinate
(Ml ~ M,)/M defined ng the difference between the masses to elther eide of
the polnt m?dwny between the ends of the shape.  For computatilonal convenlence
the fuslon coordinate for an asymmetric shape Is chosen equal to the fisslon
coordinate for the corresponding symmatric shapo.

The thivd difference Ja that we are now using o new set of paramcetoers
for the sidnple=particle potentials Our orlginal set of paramctors was deo-
termined from swtatIntlcal calculatfons md {rom adjustments to oxperiment al
dgihnple=particele levels dn the beavy spherieal nucleus 200p,  [47). 1n the
new set, whilch bag beon detormined In collaboration with Nilanon, we have ro-
detormined the range of the Yukawa foldlng function (which repulates the
nurface diffuaenesy of the potential) and the apin=orbit Interaction strenpthy
For ncutrons and protons from adJustmentn to experimental winple-partlelao
leveln In heavy deformed nuclel. The resulting values off thene constants are
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the well depths for neutrons and protons and the radius of the spherical
generating potential remain unchanged [47]. The potential's surface is now
11%Z thinner than previously, and the spin-orbit interactions for neutrons and
protons arc now stronger by 12% and 6%, rcspectively. These differences a-
rise mainly from requiring the calculated single-particle levels to reproduce
the observed gap at N = 152 in the experimcental ncutron levels. With these
new parameters, the experimental levels in 2%8Pb are reproduced slightly less
accurately than before. It appears cxtremely difficult to find a single sct
of paramcters that reproduces satisfactorily the experimental levels in both
spherical and dcformed nucleld.

In the new calculation with the modified oscillator potential, the only
difference compared to a previous study with this potential [28] is the re-
placement of the liquid-drop model by the droplet model; we therefore omit
the intermedlate results calculated with this potentilal and present only the
final comparison with cxperimental data.

We show in Fig. 5 the barrlers that are calculated with the folded Yukawa
potential for a group of actinlkde nuclei. The dashed curves gilve ihe poten-
tial encrgy for symmetriec deformations and 1llustrate what we belleved about
fission barriers four years ago in Vicnna, At that time we thought that a
second minimum existed between two peaks in the barrier and that it was re-
sponsible ior shape isomers and intermedlate structure In fisslon cross scc-
tions.

This accond minimum occurs because of speciol degeneracles In the ringle--
partlcle energles for shapes of high symmetry. In particular, when the uu-
cleus 1s approximatcly twlee as long as It s wide, the cenergy s Joweroed
substantinlly for particle numbers that correspond to actlnide nuclel,  Be-
cauge of this--and because the macroscople contrlbul lon to the enerpy i1s
close to Its saddle polnt and hence relatively float at this deformat{ien--
the rosulting fisalon barrices of most actinide nuclel contain a second
min [inum.

But: in Viemma we st could not understand why the calculatoed bharrler
helghts reproduced the experlmental values no poorly, or why actinlde nuclel
usually divide asymmetrically.  Shortly thereaftver several caleulationn |2=-5,
20::28, 3337, 42, 47, 49] Indlcated that the second saddle polot In the [ly-
sion barricrs of the Hghter actinfde nuelel  ta Jowvered by neveral MeVowhen
masa-aaynmet rice deformat. lons are Introduced, as Indicatod here by the nolid
curves.  Jor the heavier actlobde nuclet the eneepv of the gecond sadd e
point [s reducod much leas by magg-asymmetrede deformat fonn,

The firat peak [a Ffound to be atable wlth respect Lo masy anymmet ry,
However , studies by Larsson, Pachkevieh, Paulo, and othera J1, 60, G8] have
demonttrated Lhat lTor the heavier actinbde nuelel the Firat peak fn unstable
with respect to axial anymmelry (pamma daformat lons) s this lowers the enerpy
by over 2 MeV In sone cancu.
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The variation of the calculated heights of the cqullibrium polnts with
neutron number arises primarily from single-particle cffects. Howoever, the
variation of the heights with proton number is assoclated also with large
changea in the macroscoplc energy. 1Increasing the proton number Z pulls in
the naximum of the macroscopic energy to make the first peak higher than the
second. Conversely, decrecasing Z pushes out the macroscopic maximum to make
the second peak higher than the first.

Ve come finally tn a new observation that is apparent in Fig. Y: For
small neutron numbers (below about 146 in these calculatilons), the asymmetric
second saddle point 1s actually split Into two individual saddle points
separated by a third minimum! Such a splitting is possibly responsible for
the broad resonance observed in the fisslon cross sections of the ccmpound
nuclei 22¥Th, ?3?mh, and 2%“Th [78, 79]. These data have always been inter-
preted as implying that the first saddle point and second minimum in the bar-
rier are substantially higher than the calculated values. But it now appears
likely that thesc experimental values refer instead to the middle saddle point
and third minimum in the barrier, which offers a simple resolution of the
thorium anomaly. These third minima are associated with a shift in the loca-
tion of the asymmetric sccond saddle point from a large distortion r to a
smaller distortlon as the ncutron number increases. Similar third minima are
also present In some previous calculations for thorium isotopes with both the
generalilzed Woods-Saxon potential [37] and the wodified oscillator potentilal
[28], but the possible significance of these minima was not realized until
now. It is conceivable that such third minima arc a spurioue feature of
limited shape parametrizations, but this can be checked through further work.
The posslbllity of this additilonal complexity in the vicinity of the asym-
metric sccond suddle point means that great care should be taken when deter-
mining dbarriler heldghts from flsslon cross sectlons [6), when calculating
spontancous—fisesion halflives [35, 80, 81], and when correlating the proper-
ties of filssion lsomers [7].

Some of these points are appreciated better i1 a contour map where the
mass-asymmetry coordinate Is included explicitly. 7Two such maps are shown
in Flg. 6: one for 2%%U, vhere the experimental mest probable mass division
iw asymmetrle at low excitatlon energy, and the other for ?**Fim, where the
most probable mass division lg symmetric. We may think of the ground statas
of these nucleld as lakes that are sepavated from the regions to the right by
mountaln ranges.  Fach range contalns one or more peaks, additionnl lakos,
and passen (saddle pointr), although in other respects they are different In
chavactr.  For cxample, the *°%m range 18 oslgnificantly narrower than the
23ty range; thie ardaces because of the larger Coulomb force in 250pm,

For cach nucleus the irst laka, flrst pags, and socond lake occur for
symmety le shapens. (Axtally anymmetele distort lons, which are not conslderaod
here, would lower the fIrat pans by about 0.3 MeV for 230y and by about 2 Mav
for “*"Fm [11.)  Beeause of 1t high ¢levatfon the symmetrile peak for 2300 1n
spnow capped. Nowever, 1t s not necosnary to go over thin forbidding peak In
order to §lanlon: the asymmetrie route around this mountain Is 3.7 MeV lower.
In addition, the asvmmetrle ITake that saparates the (vo anymmet ric panses
provides a convenlent roest Ing place,  Beyond this lake, the anymmetric route
for "0 divides.  One braneh Teads over an anymuetrie pass down into another
pmal 1 bake In the nymictrle valley,  The second hranch lteads over o slipht ly
hipher and more asyametric pasn hato an asymmetrile valley.  Theso two vl loys
are separated by an asymuetrice snow-capped peak.  We have not yot Invest ipated
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these valleys in detail, but if a simllar topology occurs for nuclcel near
radium it could possibly be responsible for the experimentally observad three-
pecaked mass distributions for these nuclei. In contrast, the symmetric peak
for 25%m 1= relatively low in elcvation, and only 1.2 McV is gained by tak-
ing the asymmetric route around this mountain.

Apart from the equilibrium points, such potential-energy surfaces are
not invariant under a change of coordinates. It is well known that valleys
can be transformed Into ridges, and vice versa, by coordinate transformations
[82]. We therefore do not attach a great deal of significance to the appar-
ent valleys or ridges on the stcep hillside between the saddle and scissdion
reglons., The answer to the motion in this region must awvait a proper dynam-
ical calculation; some aspects of dynamlcs will be discussed later in the
symposium by Paull, Slerk, and others [35, 51].

We do note, however, that heyond the last saddle polnt: the apparent
etability shifts between synmetrlc and asymmetric shapes. Such shifta arise
from oscillations in the single-partilcle corrections. JFrom fundamental con-
siderations one expects these oscillations to continue well past the saddle-
point region provided that the nucleus continuers to elongate as it does along
the path cltosen here.

llowever, the opposite result was obtained rccently by Mustafe, Mosel,
and Schmitt fn some calculations with the modified two-center osciilator
potential [41-43). Tigure 7 shows their calculated potential-cnergy surface
for 236y, which is obtained by minimizing the potential energy with respect
to overall clongatlon and with respect to the difference in the transverse
semlaxes of th~ nascent fragments. Note the apparcnt valley that extends
from the scission region all the way back te the second saddle poiut,

Part of the diffcrence between these two results for 2%%U stemg from the
use of different single-particle potentilals, as lllustrated In Filg.
as the folded Yukawa potential is pructically constant along the symm
is, the two-conter oscillator potentinl is 5 MeV higher in the middle t

the center of elther nascent fragment, even though this particular two-ce

saddle-poiut shape does not contalu an Indented neek! This carly rise of th
two-center potentianl in the neck region contributes somewhat to an cuarly
formatio of shell structure associnted with the fragmenta.

But the main diffevence arises hecauno different shapes are consldered.
In our calculations the distance hotween the fragment mass ceonters dnereasen
continuously, whereas Mustafa, Moscl, and Schultt minfmlze the potential
energy with rospect to this coordinate, This makes It posaible for the nu-
cleus to adjust Jta Jenpth as 1ta neck radlus 16 decrcased in order Lo remain
in a local asymmetric valley., Similar local valleys are cevident In the
potent ladl=encrpy surfaces caleulated by Pauld w'th a peneralized Woods- Saxon
potentinl and the Piquld deop model 5], These valleys are allpned approxe
dmately along {Ixed values of the distanee between mass centers ro With in-
creasing r o the nucleus passes from one valley Into another, which Is the
sltuat jon In Fipg. 0. When the nuelens adjusts 1t length 1o remaln in on
asymmotric valley, It avretven at the selasfon replon with a more compaeld
phapes thils partilally explaing why the nelsnlon encipy (o higher in Fig, 7
than In Vip, G,
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5. [FNERGILS OF THE 1OCAL MTINIMA AND SADDLE TOINTS

We turn now to a comparicon betwecen calculatad and experimental energies
of the cquilibrium points in the potentilal-encergy surfaces.

5.1. Folded Yukawa potentinl

Figure 9 compares the calculated and cxpcrimental ground-statec masses
of heavy even nuclei; both spherical nuclel near °%ph and deformed actinlde
nuclel are included. The calculations reproduce the gencral trends of the
experimental results, but some systcecmatic discrepancics rcmain, as shown in
the lower portion of the flgurce., Similar discrepancles have been observed
previously [2-5, 24, 28, 29, 57]). When vicwed over a broad region of nuclei,
the discrepancy in the ground qtaLe masscs osclillates with particle number.
The maxImum error occurs for ’??Th, where it is 2.6 MeV in magnitude. For
the isotopes of a given actinlde element, the miaimum in the calculated
ground-state single-particle correction is always at neutron number N = 152,
This is because the paramcters of the single-particle potentlal are adjusted
to reproduce the gap at N = 152 in the experimental single-particle levels
of ground-state nuclei. However, this minimum in the ground-state single-
particle correctlon is observed experimentally only for the hcavier actinide
nuclel (Z # 100). For the isotopes of a given actinide element, the dif-
ference between the experimental and calculuted massce is an increasing func-
tion of neutron number,

Provided that it docs not affect the potential encrgy at larger deforma=-
tions in the samc way, such an error in the calculated ground-statc mass can
propagate into the culculated heights of the seddle point:s and remaining
minima in the poteantial-encrgy surface. 7This is illustraied In Fig. 10 for
even actinide nucled between thorium and fermium. The solid curves give the
appropriatae theorotical helght relative to the calculated ground-sgtate cnergy,
and the dashed curves glve the corrcaponding, height relative to the experi-
mental ground-state energy. The differcnce between the solid and dashed
curves 1s therefore simply the crror In the calculated ground-state cnergy.

On the other hand, an error iun a term that is independent of deformation,

such as the volume enerpy [28), would not affcect the calculataed heights of
the remainlng extrema.

The first column of Fig. 10 comparcs the theorctical and experimental
heights for the flrst saddle point. The theoretical results do not include
the effoects of axially asymmetric deformationg, which would lower somewhat
the caleulated helghta for the heavier nueled [1]. When allowance 1s made
for this lowerlng, the theoretical helghta (relative to either the calculated
exper imental pground=state encrgles) are slightly Jower than the experi-
hedphta, The second column s a simllar comparison for the height of
d winlmum, Apart from thae results for thorium, the theoretical and
expoer fmen values are in approxtmate apreement, although bath the solid and
dashed theorodgal curves show o stronger dependence on peutron number thon
In obuerved oxpe™Ngentally.

men
the sl

For Isotopea of thdsjJum the calceulated second minfma are about 3 MeV
lover than the experinentaT values commonly attributed to this minimum,  This
Tlavpe diserepaney-<topether wlith a silmllar dlucrepaney at the gt saddle
polnt-conut itwtea the thorium onomaly [34, 8, 791,  We suppest Lthae a
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possible resolution of this anomaly is the third asymmetric minimum in the
barricr, whose calculated heights agrce with the experirental values to with-
in 0.5 MeV. The discrepancies for thorium that are evident in the first
column are reduced somewhat when the expoerimental heights that are commonly
attributed to the flrst saddle point arc compared irstead with the calculated
helghts for the lower of the two asymmetrlce saddle points that surround the
asymmetric third minimum. But these calculated heights are still lower than
the experimental ones by about 2 MeV,

For plutonium the experimental heights of the second minimum are system-
atically lower by aboui 0.2 MeV for odd-ncutron lsotopes than for cven iso-
topes. As pointed out by Nilsson [67], this implices that the pairing gap is
smaller by this amount: at the sccond minimum than at the ground state. 7This
ariscs becausc the single-particle levels have a larger shell at the sccond
minimum--where the shape has a ratio of axces of approximately 2/1--than at
the ground state. Such odd-particle fluctuations in the heldght of the sccond
minimum arc evident in the calculations of Ref. [20].

The third column of Fig. 10 compares the thcoretical and experimental
heights of the sccond saddle point. For thorium and uranium both the sclid
and dashed theoretical curves are somewhat lower than the experimental values
and show a morc rapid variation with ncutron number. For plutonlum and curlum
the dashed curves are in approximate agrecment with the experimental values,
but the solid curves vary too rapidly with neutrun number.

In some calculations of fission-lLarrier heiplts [34, 80, 86], the values
of two constants in the liquid-drop modcl are adjusted in order to repreduce
optimally the cxperimental helghts of the necond saddle point. Because the
calculated heights are affected to an unknown extent by the poorly understood
systematic crror in the calculated ground-state energles, great care must be
exercised when attempting to determine liquid-drop-model constants in this way.
As an cxtreme cxample, had cxperlimental rather than calculated ground-state
encergies been uscd in the previous studies [34, 80, 86], the resulting values
of the surface-asymmetry constant K would have been substantially lower.

At present we are calculating the [lsslon barriers for a broad region of
lighter nucled. 7The calculatoed barricer helght for 2100 18 23.3 MeV relative
to the calculated ground--state encrgy, and is 22.0 MceV relatlve to the experi-
mental ground=stale energy.  These theorctical helphts are to be compared with
21.4 and 20.5 MeV obtalned In two different experiments |[87], ond with the
valuce of 24.7 MV caleulated by Mosel with the modifled two-center osclllator
potential and the Liquid-=drop model [4)].

5.2, Modifled osnclllator potent fnl

In thy next threce fipwres we present some analopous results obtalned
with the modified onaclllator potentlal, In Fig. 1 we see the ef fect of
axtally asynmetyice (pamma) distortlons at the fivst saddle pointy thia will be
dlncunted In greater detall later In this scusion by Larsson |, We note the
excellent apreement with experlmental resultys that Is achieved for the heavier
nuclel by Including axially asymmotrie diatort fonsg,  However, there are nome
gipniflcant deviattons between the ealeulated and exper bmental resulta Tor the
Yighter Tootopes of thorfom and aranlum.,

The resulta shown In Fipu, 12 and 13 for the accond mintwam and the
necomd paddle polnt, renspectively, are caleulated In the same way an thone of
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Ref. [28] with two cxceptlons: We now usc the droplet model for the macro-
scopic cnergy and Include a zero-point cnergy of 0.5 MeV at the ground state
and second minimuwn., The strength of the pairing intceraction is taken to be
independent of deformation. 1In Fig, 12 we see that although the cxperimental
and calculated heighis of the second minimum are In approximate agreement, the
calculated values depend more strongly on nceutron number than do the cxperi-
mental valucs. In particular, the calculated valuea contain a minimum at

N = 144 and a maximum at N = 152, whercas the experimental valucs are approxi-
mately independent of ncutron number (apart from the odd-particle fluctuations
discussed carlier).

As secn in Fig. 13, the calculated heights of the second saddle point for
uranium and plutonium are fairly constant as functions of neutron number and
are in excellent agreement with the experimental results. The agrecment is
also very good for curium, whercas for thorium the calculated values are about
1 MeV higher than the experimental values and vary somewhat too rapidly with
neutron number.

For the hcavier actinide nuclei there are no expcerimental measurcments on
the height of the sccond saddle point. However, the spontancous-fission half-
life for *°®rm is unexpectedly short compared to that of the neighboring
nucleus 2°¢Fm. 1In particular, the halflife of 380 us for 258t 18 onl
4 x 10° times that for 25%Mm [68, 89]. This may indicate that for 25%Fm the
second saddle point is lower than the ground state [60]. This could also be
true for *“*Fm, which has a short spontaneous-fission halflife of 3.3 ms
[90]. This indirect evidence therefore suggests that the heights of the
second suaddle points for 2"%m and ?°°Fm arc about zero. This is reproduced
approximately by the calculations shown in Flg, 13.

5.3. Comparison of folded Yukuwa and modified oscillator potentlals

For both the foldced Yukawa potential and the modificed oscillator poten-
tial, the present calculations agrec botter with experimental results than
previous calculations with these potentlals [20, 28, 47, 49]). O©Of particular
importance, the rapld variation of the height of the second saddle point with
ncutron number that was predicted by the old calculations but is not observed
experimentally 1s reduced substantially. PFor the modificed oscillator poten-
tinl thig Improved agrecment stems from the use of Lhe droplet model for the
macroscople enerpy. For the folded Yukawa potentJal the introduction of addl-
tional shape coordinates und the use of different parameters for the silngle-
particlce potential also contribute, Unfortunately wa are not able to answer
the delleate question of whether the improved agrecement arises becuause of the
higher-order terms In the droplet modol or slmply because of a boetter set of
constantan for the leading terms.

In carrying out this ntudy we have come to approeelate the remarkabla
simflarity In the resulta caleulated for actliunlde nuclel by use of potentinlas
that. at firat sight veem radleally differcent. Similarlties near the ground
atate are understood casnlly beeause we adjust the parameters of cach potentjal
to reproduce Lthe same cxperimental alngle-particle leveln In heavy deformed
nuclel. But In additlon the two caleutat tong yledd almBblar results at the
second saddle point for detalled quest fonn: For oxample, for which lsotope
does the maxinum decreane in enerpgy due 10 anymmetrie dintort lonn occur? And,
far whileh tanotope doen the location of the anymmet vie necond nadd le polnt
shift from a larpe distortion r to a swaller distortion? The two
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calculations answer both these questions in the same way to within an aceuracy
of 2 ncutreons for all even nuclei between thorium and fermium. This suppgestao
that the dependence of single-particle effects on deformation arises primarily
from the overall geomctrical shape of the potential rather than from fine de-

tails associated with it. This agrecs with the conclusions obtained by Balilan
and Bloch on the basis of closed statlonary paths in potentials [91].

But of course there arc some differcences In the results calculated with
the two potentials. TFor cxample, compare the rapid Increase in the height of
the sceond saddle point with increasing ncutron number just below 152 in the
folded Yukawa calculations with the relatively constant behavior in the modi-
fied oucilllator calculations, This difference comes about from effects both
at the ground state and at the second saddle point. As an cxample, for plu-
tonfum the ground-state cnergy calculated with the folded Yukawa potential
decrcases by 1.1 MeV between N = 144 and N = 152 and the saddle-point cenergy
increases by 1.0 McV, which incrcases the height of the sccond saddle point
by 2.1 MeV. 1In the modificd osclllator calculations the corresponding valuecs
arc 0,19 MceVv and 0.02 McV, which increascs the height by only 0.21 MeV. At
the ground state the diffcrences arilse because the single-particle level den-
gity near ncutron number N = 144 is slightly higlher for the folded Yukawa
potential than for the modified oscillator potential (even though both poten-
tiuls are meant to reproduce the same experimental levels).

We find that the levels at the sccond saddle point are much less sensi-
tive to changes in the paramcters of the single-partlicle potential than arce
those near the ground state. The major differences at the sceecond saddle
point secm to arlse because In the folded Yukawa calculations we vary the
necking coordinate 0, Independently of the separvation and asymeetry coordi-
nates, vhereas In tha modifled oscillator calculations the necking conrdinate
€, has a prescribed dependence on the other coordinates.

Another dliffercnce is that the heights of the sccond saddle point do not
decrecase as rapidly with Increasing proton number in the folded Yukawa cal-
culations as In the modiflcd oscillator calcuwlations. This ariscs primarlly
because the sccond saddle paint Lfor heavy nuclel noear z“’Fm, for example, oc-
curs necar the macroscopic saddle polint with the folded Yuhawa potentlialg
whereas with the modlfied osclllator potential It occurs al a somewhat larger
deformat fon, wvhere the macrogscople contribution is about 2 MeV lower.  The
miain reason that the second sadd)e occurs at a smaller deflormation with the
folded Yukawa potentlial 4s that the sinple partlele levels cross earlicer.,

In order to permlt a better cholee between the avatlable singleparticle
potentinls, and In order to determine Lhe constants of these potent Inls more
preclaecly, woe nowed more direct experimental tnformatfon at larpe deformatlons,
This Includes the determinat lon of the nuclenr shape ond the Ldentilfleation
of the sfrgle-partlele stotes at the gecond minlmoum, for whilch some notable
firat steps have been taken |92-94],

Wa apgaln stress that, desplte theae mlinor differences, the two poten-
tialn yleld remarkably simblar results for the tleston barrlers of actialde
nuclel, It Is therefore disconcert bng to note the rclatively Lavpe difter-
ences In the predictlona for superheavy nue,el based on the two potentlaly
[24, 25, A7-09).  In particular, the mod i Tad oseillator potent fal prediets
that the ecastern slde of the Taland of superheavy nuclel (Fooo, the wide with
neut ron number preater than 184) to more ntable than the westoern wlde, wvherean
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the folded Yukawa potential (as well as the Woods—Saxon potential) predicts
that the western side is more stable.

We had originally thought that part of chis difference was caused by
having uscd experimental single-particle levels in 208ph to determine the
parameters of the folded Yukawa potential and single-partlcle levels in heavy
deformed nuclel to determine the parameters of the modificed oscillator poten-
tial. But now that we use levels in heavy deformed nuclei for both potentials
the differences are cven greater [50]: This comes about because the surface-
diffuseness parameter for the folded Yukawa potential is now smaller, which
makes this potential more like a square-well potcntial. We conclude that al-
though satisfactory uagrecement with experimental results may he achicved for a
limited region of nuclel through the adjustment of parameters in the single-
particle potential, great care must be exercised when cextrapolating the poten-
tial to new regions of nuclel.

b. FISSION-IFRAGMENT MASS DISTRIBUTIONS

We come finally to the puzzle that has intrigued physicists ever since
the discovery of fission: the preference of most actinide nuclel at low ex-
cltation encrgy to divide asymmetrically. We now understand this preference--
as well as the preference in other siltuations for nuclel to divide symmetri-
cally-~in terms of single-particle effects superimposed on a smooth macro-
scoplc background.

6.1. Crigin of asymmetric instabilitles -

Let us cxamine these two contributions individually. As illustrated in
Flg. 14, the saddle-point shapes for the macroscopic portion of the energy are
stal.le against nass-asymmetric deformations for nuclei heavier than zbout sil-
ver and are unstable for lighter nuclel. Because the quantity plotted is
cqual to the stiffness against mass asymmetry divided by the corresponding
Inertla, the effective mncroscople ctiffness agalnst mass asymmetry increases
sharply for hcavier nuclel. In order for an asymmetric mass division to oc-
cur, a posslble single-particle preference for asymmetry must be sufficlently
strong to overcome thfs microscopic preference for stabllity. Because the
magnltude of slngle-particle effect: remailus approximately constant with in-
creaslng mass number, thls Increase In the stiffness of the macroscopic con-
tributlon sugpesta that sufflclently heavy nucled will always prefer to divide
symmotrically. Some recent calculations with the modified two-centor os-
clllator potential support thls observation [43].

We have already scen that the addition of single-particle cffoects to the
microscopie encrpy can lead to a high and sharp peak in the total potentlal
energy as a lunctlon ol the symmetric flssion coordinate. Thls peak fs
cauged by an unusually high single-particle Tevel density near the Ferml sur-
face for thils particular shape.  Any type of delormat lon that reduces thils
high Jevel deantly leads Lo a decrease in the single=particle correction.
Whercas the single-partiele levels depend lincarly upon nymnetric doforma-
tions, they ave to first order fndependent of asymmetrle deformations.  For
large asymmet ric deformat lons many lovels remaln practleally conntant, wheroas
nome apecific Tevels vary stronpgly [27]. When these specdi e Tevels are near
the Ferml swm face, asymmetric deformat fons can reduce the sinpgle=partiele cor-
rection,  Then, provided that the macroncople enerpy does not Increase too
raphdly, the total potent fal energy should have an asymmetrle path of lower
conergy leadlog around the symmetric peak [27, 906).
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Two near-lying lcovels are affected stronply by an asymmetric perturbation
when the matrix element of the perturbation between thoem is large. 7The matrix
element of a mass—asymmetric perturbation 1s large between two states of op-
posite parity that have similar transverse and azimuthal wave functions and
that have 0 and 1 node, respectively, in their wave functions aleng the sym-
metry axis z. This is illustrated in Fig. 15, wherc the neutron levels near
the second saddle point of an actinide nuclcus are shown as functions of mass
asymnetry. These results are calculated with the modificd oscillator poten-
tial. In terms of the asymptotic quantum numbers [Nn,AQ], the levels that are
affected most by mass asymmetry are [40AQ] and [51AQ). Four orbitals of
each type occur between neutron number 130 and 170 at the second saddle point;
it is the presence of these cight mass—asyrmetry-favoring orbitals near the
Fermi surface that leads to mass-asymmectric sccond saddle poinls in actinide
nuclel. These same orbitals are also responsible for mass asymmetric saddle
points in calculations with the folded Yukawa potential and with the general-
ized Woods-Saxon potential [5].

As the nucleus continues to deform past the saddle point, the development
of the neck and ultimately the rise of the potential iIn the neck cause all
levels to group into ncarly degeneratce pairs of levels of opposite parity.
This occurs becausc the squeezing at the neck ralses the energy of a state
without a node at 2z = 0 more thar it raises the energy of a state with a
node. As stressed by Andersen [97], these pairs of levels finally becowme the
levels in the twe individual fragments after scission. In this limit every
level 1is affected by a change in mass asymmetry. However, becausce of the dif-
ficulty of mass transfer near sclssion, the mass split must be decided some-
vhat before this point. But in this way we sce the connection between the ef-
fects of shell structure inr the f{ragments and at the saddle point.

At the first symmetric saddle point of actinide nuclel the single-particle
level density near the Fermi surface 1s also high, but such shapes are stable
agalnst mass asymmetry because tlie mase-asymmetry-Lavoring orbitals are not as
close to each other there. On the other hand, axial-asynmetry-favorlng orbi-
tals are present near the Ferml surface at the first saddle voint ol the
heavier actinide nuclel, which lcads to axially asymmetric first saddle points
in these nuclei.

6.2. Saddle-point properties

Although a few mysterles still remain, the main features of experlmental
fisslon-fragmeant mass distribut fons arce now understood in terms of the cal-
culuted propertiecs of the saddle poilnts. At low excitation energy, most hcavy
nucled (72 = 90) divide primarily into one large fragment and one small frug-
ment. For these nuelel, the sccond saddle polal is calceulated to he
reflection-asymmetrde In shape. Flgure 16 shows for actinide nuclel the cor-
relation that exfiatg between the expoerfmentazl most probable mass asymmotr Les
and the valuwes caleulated at the scecond saddle polnt with the folded Yukawa
potoential.

1f the mans distributlon Js detormined gt the scecond saddle point, then
the cxporfmental peak=to-valley ratfo should be related oxponentially to the
differcnce hetween the enerples of the sceond symet ric saddle polin and Lhe
sccond asymmetrle saddle point [101]. Such o correlation s presented In Fig.
17 for actinlde nuclety the folded Yukawa potential o used to caleulate the
difforences in thie enerples of the saddle poalnts,
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What happens to the nucleus afier it passcs over the asymgetvic second
saddle point? It has two main choices: It can adjust 1its overall length in
order to remain in an asymmetric valley of low potential energy creatoed by
the singlc-particle effects [5, 42, 43]. Or alternatively, it can iucverse
its overall length in nccordance with the preference of tlhe mecroscople part
of the energy. If this occurs, it moves out of the asvmnetric vallzy of low
potent.ial energy onto another part of the multidimensicnai deformialion
space [5]. These two possible alternctives are illustrated by the potentinl-
cenergy maps in Figs. 7 and 6, respectively. Perhaps some information on
which alternative a nucleus chouses could he obtaln:d from a careful examina-
tion of experimental fission-fragment Kkinetic erergies. But it dis more likely
that we will have to wait for a proper dynamical calculation to provide the
answer to this importamt question.

Experimental fission~-fragment mass distriltutions for nuclel in the
vicinity of radium (84 < Z < 90) have three pzaks; one corresponds to
division into equal fragments and the othcrs correspond to division into wn-
cqual fragments. Still lighter nuclei (Z < 84) divide primarily into two
equal fragments at all e¢xcitation energles for which the mass distributilons
are known. DMore recent experiments show that the mass asymmetry also de-~
creases strongly for very heavy nurnlei [102, 103]. In particular, the most
probable mass split in the thermal-neutron-inducad fission of 2°7Fm (% = 100)
is symmetric [103].

In our new calculations with the folded Yaukowa potential, the saddle
point for ?2CPRn isg elizhitly asymmetric [(M, - M,)/M, = 0.075] and 1s 2.3 MeV
lowcer in energy than the corresponding symmetric .addle point; this agrees
qualitatively with most of the other calculations for radium isotopes |5, 28,
33a 47, 49]. We have nct yet investigrted the potentlal-cnergy su=facce for

""Ra for large distortlons beyond the saddle point or for large nass asym-
metry, but 1t is possiblce that an asymmetcic valley gimllar to the oue shown
in Fig. 6 for 2%%u will apperar. If so, the presence of such an additional
valley may be responsible for the three-peaked mass distributions obscrved
experlaciutally for nuclei ncar radfum. On the other hand, odd--particle ef-
fects may be parviully responsible, because the exgorimentnl mass distribu-
tions are for compound nuclel such as 22%p¢ ana ** Ac, which contain once or
more odd partlcles [104, 105].

For 2?%p0 we fInd in our new calculations with the folded Yukawa poten-
tiul that the potentilal evnergy is cextremely flat near the saddle point. Al-
though the small diffcerceaces in potentilal energy in this repgion are comparable
to the numerical accuracy of the calculations, the results taken at face value
yleld an asynmetric saddle point [at (M, - M;)/M, = 0.092] that 1s 0,25 MeV
lower than the symmetrvic saddle point. The pealk that scparates them is only
0.25 McV higher than the symmetric saddle point. Although the total potential
encrpy Is flat near the saddle point, the single-particle lovels themselves
vary sitrongly with deformation. Becausce the single-particle levels at the
siaddle point Influence such quantities as flselon-Tragment anpular distribu-
tions, the proper measurcement. and analysis of those quantities provide val-
uable Information concerning the saddle-point shape [1006].

For heavicr actinide nuclel, the sceond saddle polnt decreases In height
relative to the first, and these nucled begin thdy descent with a shape cor-
vesponding to the Flrst saddle polnt, which is reflection symmetr le,  In ad-
dition, the asymmetrie scecond naddle polut 1g only allghtly lower than the
corresponding symuetric one and occeurs at a celat fvely small mass anynmetry
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(for **%rm these values are 1.2 MeV and 0.050, respectively, ia our folded
Yukawa calculatfons). This Is at least partially responsible for the tiransi-
tion to symmetric divisions in the thermal-ncutron-induced fission of 237,

As the excitatlon encrgy incrcases, the probability for division into
two cqual fragments increanses, untll at high energies the experimental mass
distribution for all nuclei is peaked about a division into two cequal frag-
ments.  This transition Is probably associated with the decreasc in relative
Importance of single-partlele effects at high excltation energies, where the
nucleons arce distributed randomly over a large number oi single-piarticle
levels,  This effectively destroys the Influence of the shells, and--in a
loose manner of speaking—-—the system divides 1n accordance with the smooth
macroscopic contributlon to the energy, which praefers an equal-mass split.
Thls will be discussed later in the symposzium by Jensen [107].

The phenomena that we are able to understand qualitatively in terms of
the caleculated saddle-polnt syinetry properties are thus the mass asymmetry
in the low-encrgy flssfon of most actinide nucleil, and the transitions to
symmetrlc divisions for beth lighter and lLicovier nuclel and at high excitation
energy.  The calculated saddle-polut propertics do not reonroduce the exact
locatlons of the transltions to symmetric divisions and do not reproduce the
expect.ed symmetric and asymmetric saddle points for nuclel such as radium in
the trimslitlon region, A more quantitative study of flsston-{ragment mass
distributlons would require a dyaamical calculation to determine the motion
bayond the sccond saddle point.

7. CONCLUDTING COMMINTS

We have dlscussed recent advanees In the calceulation of the nuclear po-
tentlal cnerpgy of deformatlon, with primary cwmphasls on the macroscoplie-
microscopic method,  As specific examples of thils method we have presentoed
gome nev cesulte ebtained recently at Los Alawos with the folded Yukawa and
modificd osclllator single=-particle potentlals; the macrosceple energy ds cal-
culated by use of the droplet modael,

A varlcty of phenomena associated with puclear shape changes can be
understoad on he basls of thlia tvo-part approach.  The mocroscopic part gpivens
the smooth trends, and the mieroscopic part glves the fluctuations that arise
from single=particle effects.  In this way such vorled phenomepn as nucloear
ground-state masses and deformat tons, sccowd wintma In the fleslon barricrs of
act Inlde nueleld, fisston-barrloer heights, and flussion-fragment mass dlstr Lhue-
tiony arce scen to have a common orvlgin.

From comparisons with experimental resolts we have seen that the presoent
accuraey with vhleh we are able to calculate the nuelear potent 1al energy of
deformat Ton s about 1 HeV, although larper syveatemat le errorag are stlhllb present
In spome catiey,  Some of these errors are associated with Taperfect determin -
tionn of the constants ol both the maeroscopie cuerpy and Che slogle-particele
potent tale Namovieal 'naccuractes avise from caleulat ing shell and pal Ing
correctlions for a repglon of nuclel from shaplespart Ledle Tevels for one central
nue lewsy numerfcal Toaccuracles are alao prezent In the exteacet bon ol the
shell correction trom a glven set ot gloplecpartlele levelys, Some of the ere
rors could arise from an Inadequinte treatuent of wero poinl enerples, Popre
haps we are adng, the wrong functional form for clther the macroscople coerpy
or the anlopglecpictiele potential,  But probably the major errors atem [rom an
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Inherent limitation of the macroscopic-microscoplc wmethod ltsclfl, such as

the neplect of terms that are scecond order in the deviatlon of the actwal nu-
clear density from a simooth density. These second-order effoects will be dis-
cusscd later In this session by Brack [71].

When thesc same general methods arce applied to superheavy nucledi, we
find the result shown in Fig. 18: An island of nuclel in the vicinlty of
114 protons and 184 neutrons is expected to be relatively stable agalnst spon-
tancous fisslon, alpha decay, and beta decay. As s true for any island,
there are two general ways by which the island of superheavy nuclel may con-
celvably be reached--by sca and by air. In the next talk loward will discuss
the approach by sca, where one would reach the southeastern, or ncutron-rich
shorc of the isliand through the multiple capture of neutrons [50].

APPFNDIX. SHAPE CNONSITRATNTS

The ground-state enerpy 18 determined by minlinlzing the potential enerpy
with respect Lo an elongation coordinate and a necking coordinate in two dif-
ferent shape parametrizations., We use flrst a conctrained verstion of the
three=quadratic~surface paramctrization, which contains the six deformacion
coordinates o, 0,, 0, 0,, @,, and «a, [44-5]1]). The first three coordinatcs
describe symmetric clofonlmtlmm, and Llu lLast three deserdbe asymmetrlce de-
formations. TFor specifylng ground-state deformatlons, we climinate one of the
three symmetric coordinates by relating the cecentrieity of the middle sphe-
roid to that of the two end spherotds. This 1s done by requiring that the
relative quadrupole moment of the middle spheroid be equal dn magnitude but of
opposttce sign to the relatilve quadrupole moment of clther end spheroid. The
two remalning symetrile coordinutes are chosen to be the quadrupole moment
Q, and hexadecapole moment Q) of the shape |50]. We find that this parame-
trizatlon deseribes very poorly the shapes of nuclel with larpe positive hexa-
decapole noments (Lght 1sotopes of thorlum, uranium, and plutontum). In
particular, the penerated shapes have a large curvature near 2z » 0, which
results In an wnphystfeally Targe surfuee enorgy.  For this reason we also
study the potent fal energy near the pround state as a function of the coordl-
nates v and v, dn Nilason's perturbed-spherold parametrizatton [1, 2,
23=-29). Yor mout puclel the use of this purlmulll/ntlun resulta In a Jower
ground-stuate enerpy (by up to 1.2 MeV for 27%Ih).  lNowever, for eeveral nueled
with ncutron number N clone to 152 the enerpy calculated In the constrained
veraion of the lhrtv-qundrullv-hurluto paramet rlzavion 1o lower (by up to
0.4 MoV ror M40 Ct).  For each nuelews we use the lover ground-statoe onerpy
caleulated with thene two parametrizat Tonu,

The remadnlong [ Inalon barvier oxtrema arve dotermined by use of the three-
quadrat le=om tace parametvizat lon only.  (For compa inon we are currently re-
determinlog them by use of Nlleson's perturbed-spherold parametrtzat ton,) o
thin determhnation three coordinaten are varled Independently: the dlstance
between man: centers r, the necking coordinate o, y and the aaymmetry coordi=
nate e The coordinate w,  la alvays soel -qull to 0, cand @, o aned to
keop the conter of mann §lxed al the orlplo. When o, In varted, the coordl-
nate oy whiceh apecifion the aeparat fon ol the end-spheroid centory Ix
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determined so that the distance r  between the actual nascent=fragment wmass
centers remalns fixed. The {ragment-ccceutricity coordinate o, 1Is taken
equal Lo its value for the y-famlly shape |45, 47] that has the same valuc of
r. For asymmetric shapes (u, # 0, r is chosen to be the same as for the
corresponding svemaetric shupﬁ. Because a Jarge chaovge in a, sonet.imes leads
to a umall change In the actnal shoape, we define the mags—-asynmetry coordinate
as (M1 - M?)/(M) + M2) = (M1 - Mz)/Mo' Here M, Is the mass on one slde of
the polnt midway between the ends of the shape, and M2 is the mass on the
other side,

The asymmetric saddle points arce determined in the followlng way: We
conslder scven volues of 1 iIn the vicinity of the sccond saddle point.  With
r fixed we vary (¢, and the mass-asymnctry coordinate fndependently; we use
five values for oncﬁ of the last two coordinates, which makes o total of 25
grid points. TFor cach mass asymmetry we mindmize the energv wilth respect to
g, In thls way we obtaln for cach value of r the enecrpy as a functlon of
mass asymmetry; thesce energies arce then used to construct contour maps as
functions of r and mass asymmetry. From these contour maps the asymmelric
saddle points are then determined. In our contour maps all distortion coor-
dinates (Gl, O,5 Oy @, G,, a,) are continuour functions of r and maes
asymmetry, thus insuring that we do not “tunnel through" a mountain ridpc
when mindmizing with respect to 0, and consequently obtaln a spurious
saddle polnt of lower cnergy.

When determining the first saddle point and scecond minimam, only r and
0, darec varied because In this reglon the potential energy {s stable apainst
mass-nsymuetric distortions (or In o fev cases only allpghtly enstabla),
Therefore, in the two contour diagrams displeyed In Flgo 6 the potentlal
cuergy for asywactrie shapos In minimized wlth respect to o, only du the
vicinity of the second saddle polnt. 1o other reglons asymectrle distort ions
arc penerated from the correspond fng symmetyle ghape by making o, ¢ 0. In
the regdon preceding the second saddle point thete symuctrie shapes are Lhose
for the pround state, first saddle polul, and sceond winlmur Tor the
part lcular nucleus under considerat fon.  Peyond the seeond saddle polat the
symmetric shapes correspond to thore along the most probable ddealds ed
Mqguld--drop-model dynamleal path from saddle to scelsslon [449,51) o Fis-
allity parameter x = 0.8,
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5.

F1GURE CAPTTONS

Effect of axial asymmetry and mass asymmetry on the fission barrler
of 2*%Pu. The dashed curve (which sometimes coincides wvith the rolid
curve) gives the potential energy for symmetric deforma.dons as o
function of the distance r Dbetween the conters of mass of the two
nascent fragments. The solld curve pives the potential cnergy along
a path that leads over the axinlly asymmetric first saddle point and
over the mass-asymmetrlce scecond saddle poinl.. The lower portion of
the figure shows the nuclear shapes corresponding to sclected points
along this path, namely the sphere, four cquilibrium points, and the
point of emergence from the barricr in spontancous fission., The
results for axially symmetric shapes are calculataed with the folded
Yukawa potentlal and the droplet model Ly use of methods to be de-
scribaed later, The reductlon in energy at the flrst saddle polnt is
taken from Ref. [1]).

Nuclear shapes deucribed by the flssion coordinate y, and the cor-
responding spin-independent nuclenxr single--particle potentials for a
diffusc-surface folded Yukawa potential [45, 47, 49]. The cquipoten-
tial curves are shown for 10, 30, 50, 70, and 907 of the well depth.

Encrgy levels of a harmonic~osclllator potential for prolatre sphe-
roldal deformations [49). The particle numbers of the closed shells
are indicated for a gphere and for a spherold wvhose major axis is
twice ite wminor axis.

Fxtraction of the shell correctioa from single-pmtdcle cnergles

[47, 49]. The ncutron levels in a spherical 200 nucleus are shown
by solid polints and define a stafrcose function Cst-ir(")' The
smoolth curve ¢ (n) removes the local rluctuations o% the solid
points but retains thelr long=range behavior., The Fermi surfoce )y
of the amooth distribut lon of levels is 11lustrated for 120 ncutrons.
The corrcaponding shell correction 18 given by the differ uce be-
tween the arcas under the stalrcasce curve and the smooth curve up to
nn= 126,

Fiaslon barricers for actinide nuclei, caleulated with the folded
Yukawi potentlal and the deoplot wmodel,  The dashaed curves (which
sometlmes colneide with the gotid carven) pive the potential enerpy
for symmetric deforantlons as a functlon of the distance v bhoelweon
the centers of mass of the two nascent. frapgment s, The solld curves
glve Lthe potential enerpy along o path that leads over the mass-
asymmetric snccond saddie point,  Thls path Jg usunlly determined by
minimizing the potent lal encrgy wlith respect to mane asymmetry for
fixed values ol ro Nowever, whoen such @ path Jumpn discontinuously
from one valley to another wlthoul passing over Cthe auyamety fe sadd e
polnt, the path In thls reglon In determined by the method ol steep-
enit desceents This explalng why the solld emven gomet Ime:s e above
the dusliod curves, The potent tal enorgy for each nueleus e cal-
culated with single-partlele levels for 20%r,



FIC. 6. Potential cnergy of 23°U and ?5%Pm, calculated with the felded Yukawa
potentlal and the droplet model. Yor cach nucleus contours of con-
stant potential energy are plotted as functions of the distance be-
tween mass centers r  and the mass-asymmetry coordinate (M, - M )/Mo'
The contours are labelled by the energy (in MeV) relative to the?
spherical droplet-model energy. The solid curves are spaced at in-
tervals of 2 MeV; dashed curves are used for Intermediate values.

The diastortions Iincluded vary from a sphere (at r = 0.75 R_) all the
way to scission, which 1s Indicatcd by the sllightly curved dot-dashed
line. The potential encrgy for each nucleus is calculated with
single~particle levels for 250cr,

FIC. 7. Potentlal encrgy of 230y, calculated by Mustafa, Mosel, and Schmitt
with a modified two-center oscillator poiential [42]. Contours of
constant potential energy are plotted as functions of the neck radius
D and the masses of the two nascent fragments. The contours are
spaced at intervals of 1 MeV and are labelled by the cnergy (in McV)
relative to the ground-state minimum potential cnergy; an additional
contour is included ncar ecach saddle point. The dashed lincs rep-
resent Interpolated or extrapolated values.

FIG. 8. Comparison of the folded Yukawa potential with the two-center oscil-
lator potential at the asymmetric second saddle point for 23U, The
upper portion of the figure shows the saddle-point shapes, and the
lower portion shows the corresponding potentials along the symmctry
axis. The folded Yukawa potential is 0.19 McV higher in the neck
than in the center of the larger nascent fragment and is 0.04 MeV
higher In the neck than in the center of the smaller nascent frag-
ment.  The two-center oscillator potential [62] 1s 5 MeV higher 1n
tho middle than in the center of cither nascent fragment.

FIG. 9. Comparison of cxperimental ground-state single=particle corrcctions
for even nuclel with values caleulated by use of the folded Yukawn
potential and the droplet model. The ground-state single-particle
correction Ju the nuclear ground-state mass relative to the spherical
macroscople enerpy, which 1s caleulated here from the 1973 droplet
nodel of Mycera and Swiateckd [50, 55, 56]. The eiperimentul] manses
arc taken from Ref. |83). Tha calculated manses are obtalned by
minimizing the potentinl cnergy wlth respect to a separation coordl-
nate and o necklng coordinate in two different shape parametrlza-
tlong, an diacusswd in the appendix.  Sloagle-purticle levels for
208ph . ?22%Ra, and ?°%CF are uwsed to calceulate the potential enargy
for cach nucleus In the left=hand, mkidle, and right-hand regions,
respect fvely: these replong are Indleated by the dashed vertlcal
Thwea, A constant proand=state zero=-point enerpy of 0.5 MeV fo din-
cluded for cach nucloeun.  The lower portion of the flgure pives the
dinerepancy betveen the experlucntal and caleulated masnod.,

FIG, 10, Nelphta of the Fleat naddbe polnty second minfmom, and asymmetyrle
pocoud saddle podat, an funct fonn of neatron nombeds - N. The solld
curven plve the helphta calewlated with the folded Yukawa potential
nnd he droplet model relative to the calenloted pround--state encrpy,
and the dashed curves plve the corvesponding helpht velative to the
expervimental pround-riate enerpgy.  The Hipghtwelpht dot-dashed Hoes
fn the tivet column give the hetpht of the tover of the two asymmet-
ric aaddle points that gurround tha anymmetrie third minimum

-29..



(relative to tlie calculated ground-state energy). To the left or the
wavy vertical line the lower saddle point occurs before the minimum,
and to the right it occurs after the minimum. The height of this
third minimum is given in the sccond column by the lightweight dot-
dashed lines. A constant zero-—-point energy of 0.5 MeV is included
for cach nuclcus at 1lts ground state, sccond minimum, and third
minimum. The potential energy for cach nucleus is calculated with
singlc-particle levels for “°"Clf. The calculatious are performed for
even nuclei only, but odd-neutron nuclel ave also included in the
experimental data, which are given by solild clrcles [20], open cir-
cles [84], solid squares [79], open squares [78], solid upward-
pointlng triangles [6], and a solld downward-pointing triangle [85].

FIG, 11. Reductlon in the height of the first saddle point duc to axially
asymmetric deformations, as a function of mass number A, The open
circles connected by the dashed lines give the heights calculated
with a modiflcd oscillator potential and the liquid-drop model for
shapes that are restricted to axlal symmoetry [28]; the open circles
connected by the solid lines give the corresponding heiphts calculat-
ed by Larsson and Leander for axially asymmetric shapes [1]. The
gtrenpgth of the pairing Interaction ls assumcd (o be proportional to
the surface arra; the liquld-drop-modcl consiants are taken from
Ref. [57]. No zero-point energy is included at the ground state.

The colculations are performed for cven nucled only, but odd--ncutren
nucled are also included in the experimental data, which are given by
the solid squarcs |84]}.

F1G. 12. Height of the second minimun, as & function of neutron mmber N,
The curves are calculated with the wodlfled oscillator poteatial and
the droplet mode]l for even nucled. The experimental data are given
by circles [20] and & trtanple [85). Solid symbola are uscd for cveo
nuclel, aud open symbols ace usced for odd-nceatron nueled.

F1G. 13. leight of the asymmetric sceond suddle polnt, as a function of ncutren
nunber  N.  The corves are caleulated with the modifled osclllator
potentlal and the droplet model for even nuclel. A constant growxl-
state zerv-polnt energy of 0.5 MeV 1lu dncluded for cach nucleus.  The
experimental data are glvea by squarces [8$4], clreles (201, ond trlan-
gles [6].  Solid symbols are used for even nucled, and open symhols
arc used for odd=ncutron nucled,

FIG. 14, Square of the DHequency of mans-asynmetrice oaclltutfons of an ideal-
1zed liquid drop about It saddle-podnt shape, as a fuanction of flg-
aflity pmrameter x.  The results are shown Tor nuelel along the
valley of heta stablllity [44).  The eritical Puslnaro-Gallone polint
195] 1o denoted by the arreow. 1o the right of this polot the Tigubd-
drop=model sadd Te-poldnt shape g stahle agalost mass agymmet vy, and
to the Jeft v s unatable,

FIG. 15, SInple-pneutron Tevels near 1he second saddle point of an act inlde
nucleud, o funct fons of Lhe maga-asymeetry coordnnte € o The
Tevels are calealated with the modH led otelHlator potential for
asymmetr e distort tons detined by v, and oG, - 0.4% 1,,
I27). The leveln are Tabelled by the anymptot e q|ﬁn|tun|||unﬂn-rn
INNZASZI ned by the parlty For the correaponding eymmet r e shapo,



FTG. 16. Correlation of cxperimental most probable flssion-fragment mass

FIG.

FI1G.

17-

18,

asymnetries wlith values calculated at the asymmetric second siaddle
point by usc of the folded Yukawa polential and the droplet model,
for even actinide compound nuclei. The experimental data are given
by circles [98], triangles [39], and squarves [100]. Solid symbols
are used for spontaneous fissjon, and open symbols are used for
neutron-Iinduced fission,

Correclation of the peak-to-valley ratio in experimental fission-
fragment mass distributlons with the di{fcrence Letween the encergies
of the symmetric and asymmetric sccond saddle points, for cvea
actinide compound nuclel. The energy diffcrences are calculated with
the folded Yukawa potential and the rdroplet model. 'The experimental
data are given by circles [98] and triangles [99]. Solid symbols are
used for spontaneous fission, and open symbols are used for neutron-
induced fission.

Location of the predicted island of superheavy nuclei relative to the
peninsulz of obscrved nuclei. The nuclel included in the island have
calculated total halflives longer than about 5 min [48].
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